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Table 4. Structural information on all nets derived 

Neighbouring trigonal columns are symmetry related by mirror 
planes parallel to the column axis, except in net 17 where they are 
symmetry related by trigonal axes. Nets that cannot be constructed 
from isolated trigonal columrrs (neighbouring columns share faces 
and/or  edges) are indicated by *. 

Net Projection 
number Repetition sequence onto (001) 

17 3(LH)3(S) Fig. 7(a7) 
18 3(C)3(S)3(C)3(LH)3(S) Fig. 7(b5) 
28 3(C)3(S) Fig. 6(a2) 
29 3(C)3(S)3(S)3(C)3(S) Fig. 6(a4) 
30 3(C)3(S)3(S)3(S)3(C)3(S) Fig. 6(a4) 
31 3(H)6(H)3(S) Fig. 6(b3) 
32 3(H)6(L)6(H)3(S) Fig. 6(b3) 
33 3(H)6(H)3(S)3(H)6(L)6(H)3(S) Fig. 6(b3) 
34 [3(H)6(H)3(S)]23(H)6(L)6(H)3(S) Fig. 6(b3) 
35 3(LH)6(H)3(S) Fig. 6(b5) 
36 3(H)6(LH)6(L)6(H)3(S) Fig. 7(a6) 
37 3(H)6(L)6(LH)6(L)6(L)6(H)3(S) Fig. 7(a6) 
38 3(H)6(LH)6(LH)6(L)6(H)3(S) Fig. 7(a6) 
39 3(H)6(L)6(LH)6(LH)6(L)6(L)6(H)3(S) Fig. 7(a6) 
40 3(LH)3(S) Fig. 7(al) 
41 3(S)3(LH)3(S) Fig. 7(al) 
42 3(C)3(LH)3(S) Fig. 7(a2) 
43 3(C)3(S)3(C)3(LH)3(S) Fig. 7(a3) 
44 3(H)6(H)3(LH)3(S) Fig. 6(c2) 
45 3(H)6(L)6(H)3(LH)3(S) Fig. 6(c2) 
46 1-3(C)3-1 Fig. 7(bl) 
46b 1-3(C)3-1(m)1-3(C)3-1 Fig. 7(bl) 
47 1-3(C)3(S)3(C)3-1 Fig. 4 
48 1-[3(C)3(S)]23(C)3-1 Fig. 7(bl) 
48b 1-[3(C)3(S)]23(C)3-1(m)1 Fig. 7(bl) 

-[3(C)3(S)]23(C)3-1 
49 1-[3(C)3(S)]33(C)3-1 Fig. 4 
50 1-3(C)3(LH)3(S)3(C)3-1 Fig. 7(b2) 
51 1-3(C)3(S)3(C)3(LH)3(S)3(C)3(S)3(C)3-I Fig. 7(b3) 
52 3(C)3(S) Fig. 7(b6) 
53 3(LH)6(H)3(S) Fig. 7(b7) 
54 3(C)3(LH)3(S) Fig. 7(b4) 
61" 3(C)3(S) Fig. 7(b8) 
62* 3(H)6(H)3(LH)3(S) Fig. 7(a5) 
63* 3(H)6(L)6(H)3(LH)3(S) Fig. 7(a5) 
64 [3(C)314(LH)3(S) Fig. 7(a3) 
65 [3(C)313(LH)3(S) Fig. 7(a2) 
66 3(C)3(S)3(S)3(C)3(LH)3(S) Fig. 7(a4) 
67 3(C)3(S)3(S)3(S)3(C)3(LH)3(S) Fig. 7(a4) 
68 3(H)6(H)a(s)3(H)6(H)3(LH)3(S) Fig. 6(c2) 
69 [3(C)314(LH)a(s) Fig. 7(b5) 
70 3(H)6(L)6(H)3(S)3(H)6(L)6(H)a(LH)3(S) Fig. 6(c2) 
71 3(H)6(H)3(S)3(H)6(L)6(H)3(LH)3(S) Fig. 6(c2) 
72 [3(C)313(LH)2(S) Fig. 7(b4) 

All hexagonal 3D nets are constructed from 
trigonal columns and a systematic enumeration and 
classification of such nets has been carried out 
(Andries, 1990). 
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Abstract 

Hexagonal three-dimensional framework structures 
are constructed from trigonal columns. When two 

0108-7673/90/100855-14503.00 

types of trigonal column are distinguished, all 
hexagonal 3D framework structures known to date 
can be classified in the lateral connection of trigonal 
columns (LCTC) group. Also, orthorhombic 3D nets 
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856 THE LCTC GROUP 

can be constructed from trigonal columns and a num- 
ber of such hypothetical nets related to the hexagonal 
81(i) series of Smith & Dytrych [Nature (London) 
(1984), 309, 607-608] are enumerated. A systematic 
investigation of the several ways by which neighbour- 
ing trigonal columns can be linked and symmetry 
related gives rise to a large number of subgroups in 
the present LCTC group. A general designation for 
LCTC structures by means of a composite code is 
proposed. 

Introduction 

Several approaches have been used for the 
classification of (4;2)-connected 3D framework 
structures (this notation stands to denote framework 
structures extended in three-dimensional space with 
every framework T atom being tetrahedrally coordi- 
nated by oxygen atoms, while every oxygen atom is 
shared between two T atoms): (i) by using the concept 
of secondary building unit [SBU (Meier, 1968)]; (ii) 
by using 1D structural subunits (chains, columns, 
tubes) (e.g. Barrer, 1984: Smith, 1989); (iii) by using 
2D structural subunits (sheets or layers) (e.g. Barrer, 
1984; Smith, 1989); (iv) by using polyhedral cages 
(e.g. Smith & Bennett, 1981; Moore & Smith, 1964; 
Liebau, Gies, Gunawardane & Marler, 1986; 
Bosmans & Andries, 1990) and (v) by using pore 
volumes and channel dimensions (e.g. Liebau, Gies, 
Gunawardane & Marler, 1986). In this paper we 
propose a classification for 3D framework structures 
constructed from trigonal columns (i.e. a 1D struc- 
tural subunit). 

Hexagonal three-dimensional framework struc- 
tures are constructed from trigonal columns and we 
will systematically investigate the several ways by 
which such columns can be linked and symmetry 
related to build up (hexagonal and orthorhombic) 
3D nets. A number of hexagonal 3D frameworks 
known to date are investigated concerning their 
classification in the lateral connection of trigonal 
columns group. The tridymite/cristobalite polytypic 
series is enumerated. 

Detailed structural information on established 3D 
framework structure types and their secondary build- 
ing units can be found in the revised Atlas of  Zeolite 
Structure Types (Meier & Olson, 1987) and in a com- 
prehensive review by Smith (1988). 

Some novel definitions and notations have been 
introduced in two preceding papers (Bosmans & 
Andries, 1990; Andries & Bosmans, 1990); we will 
use the same here. A table compiling all these 
definitions and notations used is given at the end of 
the present paper (Table 7, see below). Unless other- 
wise stated, net numbers were assigned in the two 
preceding papers. Table 6 (see below) compiles all 
nets that are described in this series of three reports. 
With [001] we denote the hexagonal or orthorhombic 

c axis running parallel to the symmetry axis of the 
trigonal columns building up the 3D net. 

Definitions 

Two different types of trigonal column can be distin- 
guished. 

1. A type 1 trigonal column is constructed from 
stacks of trigonally related tetrahedra lying in 
horizontal planes perpendicular to the trigonal axis 
as was described systematically by Bosmans & 
Andries (1990) [e.g. also in OFF (offretite) (Gard & 
Tait, 1972)]. A trigonal chain of 2T trigonal cages 
(denoting polyhedral cages with threefold symmetry 
and two on-axis oppositely oriented T nodes) con- 
nected by forming 1-1 (or T2) units (denoting a group 
of two linked T nodes on a trigonal axis with a T - O - T  
bond angle of 180 °) can be regarded as being a 
trigonal column with on-axis 1-membered stacks 
(1MS) and off-axis 3m-membered stacks (m positive 
integer). Therefore, all type 1 trigonal columns can 
be generated by h-membered stacks (h is one or an 
integral multiple of three). From the discussion in 
the paper of Bosmans & Andries (1990) it should be 
obvious that the following h values are possible 
(assuming a maximum of 6): (i) 3, (ii) 6, (iii) 1 and 
3, (iv) 3 and 6 or (v) 1, 3 and 6. 

2. A type 2 trigonal column is constructed from T 
nodes that are symmetry related by a 3j-fold screw 
axis (j positive integer) (e.g. Fig. 5). The dense net 
of quartz (Bragg & Gibbs, 1925) is the only (4; 2)- 
connected 3D net known to date that is built up with 
this type of trigonal column. The structure of quartz 
will be described in more detail later. 

The group of framework structures derived from 
interlinked trigonal columns in general is designated 
the LCTC (lateral connection of trigonal columns) 
group. The way by which the columns are laterally 
connected in the 3D net defines the subgroup. 

Enumerating some subgroups 

Several subgroups defined so far, together with the 
respective criteria for the classification of framework 
structures, are compiled in Table l (a)  (hexagonal 
nets) and Table l(b) (orthorhombic nets). 

Some remarks concerning Table 1 should be made: 
(i) The enumeration of subgroups is not exhaus- 

tive: it should be possible for example to build ortho- 
rhombic 3D nets from type 2 trigonal columns, as 
well as to define more subgroups for hexagonal 3D 
nets constructed from type 1 trigonal columns. A 
complete enumeration of all possible subgroups is 
being undertaken. 

(ii) Subgroup 15 is generated by trigonal columns 
connected across mirror planes parallel to the column 
axis as shown in Fig. 1 for net 52 (Andries & Bosmans, 



K. J. A N D R I E S  857 

Table 1. Criteria for classifying 3D nets in several 
subgroups of  the hexagonal (a) and the orthorhombic 

( b ) sets of  the LCTC group 

Figures in the third co lumn refer  to hypothet ica l  nets der ived by 
Bosmans & Andries  (1990), Andries  & Bosmans (1990) or  in this 
report ,  except  in those cases where  nets were der ived elsewhere.  
References to structural  in format ion  on established materials  are 
found  in the text a n d / o r  in Table  4. Unless otherwise stated, nets 
are cons t ruc ted  f rom isolated tr igonal  columns.  Subdivisions in 
subgroups have only  been men t ioned  for  subgroup 7. 

(a )  Hexagona l  nets 

Symmet ry  relat ion be tween 
Subgroup  ne ighbour ing  tr igonal  columns Examples  

Nets constructed from type-1 trigonal columns 
1 Threefold rotation axis CHA, CAN 
2 Threefold screw axis MAZ 
3 Threefold rotation axis and case 1 insertion WEN 
4 Threefold screw axis and case 1 insertion / 
5 Threefold rotation axis and case 2 insertion / 
6 Threefold screw axis and case 2 insertion / 
7 (H, L) mirror plane parallel to column axis LTL, AFS, (a) 
8 c glide parallel to column axis AFI 
9 Mirror plane parallel to column axis and VPI-5 

case 1 insertion 
10 c glide parallel to column axis and case 1 81(2) (b) 

insertion 
11 Mirror plane parallel to column axis and / 

case 2 insertion 
12 Net constructed from face-sharing trigonal DDR, 23, 24, 

columns; in general no specific cristobalite 
operator, but columns displaced in such 
a way that face sharing can occur 

13 Net constructed from edge-sharing trigonal Tridymite 
columns; in general a specific operator 

14 Net constructed from face-sharing trigonal DOH 
columns and case 2 insertion; in general 
a specific operator 

Nets constructed from type-2 trigonal columns 
24 Net constructed from vertex-sharing trigonal Quartz 

columns that are symmetry related by 
threefold screw axes 

25 Threefold screw axis / 

References: (a) Barter & Villiger (1969); (b) Smith & Dytrych (1984). 

(b) Or tho rhombic  nets 

Symmet ry  relat ion be tween 
Subgroup ne ighbour ing  tr igonal  columns Examples  

Nets constructed from type-1 trigonal columns 
15 Mirror planes parallel to column axis 46,52 
16 c glide perpendicular to y, mirror plane 52b 

perpendicular to x 
17 c glide perpendicular to x, mirror plane 52c 

perpendicular to y 
18 c glides perpendicular to x and y 52d 
19 Mirror planes parallel to column axis and 56, 79 

case 1 insertion 
20 c glide perpendicular to y, mirror plane 57, 81 

perpendicular to x and case 1 insertion 
21 c glide perpendicular to x, mirror plane 58, 74 

perpendicular to y and case 1 insertion 
22 c glides perpendicular to x and y and case 1 59, 84 

insertion 
23 Net constructed from trigonal columns that 61 

share edges along y but are isolated 
along x 

1990). The mirror planes perpendicular to y between 
neighbouring CS-type trigonal columns (CS is a 
shorthand notation for the infinite repetition 
3(C)3(S); C stands for a 'staggered' or 'trans' 

configuration, while S denotes an 'eclipsed' or "cis" 
configuration of adjacent 3MS's) in net 52 may be 
substituted by c glides (subgroup 16, e.g. net 52b). 
Accordingly, the mirror planes perpendicular to x 
(subgroup 17, e.g. net 52c), or both the mirror planes 
perpendicular to x and y (subgroup 18, e.g. net 52d) 
may also be substituted by c glides (Fig. 1). 

(iii) A group of orthorhombic framework struc- 
tures can be derived from the nets represented in Fig. 
1 by the insertion of one or more crankshaft chains 
between adjacent trigonal columns along y, in the 
same way as nets 81(1) [VPI-5 (Davis, Saldarriaga, 
Montes, Garces & Crowder, 1988)] and 81(2) were 
derived from structure types 82a (Bennett & Smith, 
1985) and AFI ( m l P O 4 - 5 )  (Bennett, Cohen, Flanigen, 
Pluth & Smith, 1983) respectively by Smith & Dytrych 
(1984). Furthermore, the symmetry relation between 
neighbouring trigonal columns along x provides fur- 
ther possibilities for the derivation of new nets. The 
cases for one and two crankshaft chains [Fig. 2(c)] 
inserted between CS-type trigonal columns are rep- 
resented jn Figs. 2(a) and (b), respectively. In the 
latter case both chains can be connected across a 
mirror plane to form the double crankshaft chain [cc 
(Smith, 1988)] [Fig. 2(d)] or across an inversion 
centre to form the bifurcated hexagonal-square chain 
[bhs (Smith, 1988)] [Fig. 2(e)]. The structural charac- 
teristics for all nets enumerated in Figs. 1, 2(a) and 
2(b) are given in Table 2. It should be noted that the 
number of nets in this group increases considerably 
when more than two crankshaft chains are inserted 
between adjacent CS-type columns. Either of the 
hypothetical nets of this series (Table 2) can be con- 
structed from the T4Os SBU which is the repetitivity 
unit of the single crankshaft chain [Fig. 2(c)]. 

B B 

X v 

I 52 , 52b 
V 52c, 52d 

Fig. 1. Schemat ic  project ion onto  the o r tho rhombic  (001) p lane 
for  hypothet ica l  nets 52 (Andries  & Bosmans,  1990) 52b, 52c 
and 52d. The  letters A and B refer  to planes that  can be ei ther  
mirror  planes or c glides (see Table  2); unit  cells have been  
omitted,  the size depend ing  on the A and B symmetry  operators .  
Hexagons  are cons t ruc ted  f rom al ternately up and down 
tetrahedra.  
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(iv) The insertion of extra T atoms between the 
trigonal columns provides still further opportunities: 
a case 1 insertion of T atoms between neighbouring 
trigonal columns enlarges the hexagonal a or the 
orthorhombic a and/or  b unit-cell parameter {e.g. 
WEN (Wenk, 1973; see below), VPI-5, net 81(2) 
(Smith & Dytrych, 1984) and the hypothetical nets 
56-59 and 73-86 [Figs. 2(a) and (b)]}. A case 2 
insertion between neighbouring trigonal columns 
does not influence the hexagonal a or the orthorhom- 
bic a and/or  b unit cell parameter [as in DOH (Gerke 
& Gies, 1984; see below). In this case, the trigonal 
columns are directly connected. 

(v) The notation 'in general' for subgroups 12 to 
14 is in no way restrictive: neighbouring trigonal 
columns in nets 23 and 24 (Bosmans & Andries, 1990) 
for example are symmetry related by mirror planes 
parallel to the hexagonal c axis. 

(vi) Both the 3D nets of left-handed and right- 
handed quartz are classified in subgroup 24 as will 
be discussed later. 

Defining subdivisions in some subgroups 

For subgroups where neighbouring trigonal columns 
are symmetry related by mirror planes or c glides 
(e.g. subgroup 7), a distinction may be made for the 

XlX2 Xl X2 

A A 

X 

y x' 56,58 x' 

73-76 77-86 

(c) (d) 

(a) (b) 

r4oa 

(e) 

Fig. 2. The systematic derivation of  orthorhombic 3D nets by the 
insertion of  one single (c) or two (d) and (e) crankshaft chains 
between CS-type trigonal columns (this type of column itself is 
constructed by connecting crankshaft chains across a trigonal 
axis). In (a) and (b) X1, X2  and X3 stand for the characteriz- 
ation of  the symmetry relation between neighbouring crankshaft 
chains [either mirror plane (d) or inversion (e)]; A and X '  stand 
for the characterization of the symmetry relation between neigh- 
bouring trigonal columns (either mirror plane or c glide) along 
the orthorhombic x and y axis, respectively (see Table 2). 

Table 2. The systematic derivation of orthorhombic 3 D 
nets by symmetry-relating neighbouring CS-type 
trigonal columns and/or by inserting ( a) crankshaft 
chain (s) ( cc) between neighbouring columns along the 

y axis 

See Fig. 1 (no cc inserted) and Fig. 2 [(a): one cc inserted; (b) 
two cc's  inserted] for representations and for the meaning of  letters 
(denoting symmetry operations) used. 

No crankshaft chain inserted (Fig. 1) 

Net 
number A B 

52 Mirror plane Mirror plane 
52b Mirror plane c glide 
52c c glide Mirror plane 
52d c glide c glide 

One crankshaft chain inserted [Fig. 2(a)] 

Net 
number X1 X2  X '  A 

56 Mirror plane Mirror plane Mirror plane Mirror plane 
58 Mirror plane Mirror plane Mirror plane c glide 
73 Inversion Inversion Mirror plane Mirror plane 
74 Inversion Inversion Mirror plane c glide 
75 Mirror plane Inversion c glide Mirror plane 
76 Mirror plane Inversion c glide c glide 

Two crankshaft chains inserted [Fig. 2(b)] 

1. X3 = mirror plane (double crankshaft chain) 

77 Mirror plane Mirror plane Mirror plane 
78 Mirror plane Mirror plane Mirror plane 

Mirror plane 
c glide 

79 Inversion Inversion Mirror plane Mirror plane 
80 Inversion Inversion Mirror plane c glide 
81 Mirror plane Inversion c glide Mirror plane 
82 Mirror plane Inversion c glide c glide 

X3 = inversion centre (bifurcated hexagonal-square chain) 

57 Inversion Inversion c glide Mirror plane 
59 Inversion Inversion c glide c glide 
83 Mirror plane Mirror plane c glide Mirror plane 
84 Mirror plane Mirror plane c glide c glide 
85 Mirror plane Inversion Mirror plane Mirror plane 
86 Mirror plane Inversion Mirror plane c glide 

case where highest-membered rings are formed 
between adjacent columns (subgroup 7H) and the 
case where lowest-membered rings are formed (sub- 
group 7L). An example of the former case is the LTL 
(Linde type L) group of Barrer & Villiger (1969) 
(fourth column in their Table 4), where the NF-type 
chains do not face each other [Fig. 3(b): H for 
high-membered rings]; an example of the latter case 
is the second - hypothetical - group of Barrer & 
Villiger (1969) (fifth column in their Table 4), where 
the NF-type chains face each other [Fig. 3(c): L for 
low-membered rings] (see also Table 4 below). Sub- 
groups 12 to 14 should be included [e.g. DOH belongs 
to subgroup 14L and net 24 to subgroup 12H (see 
below)]. Obviously, the distinction between H- and 
L-connected trigonal columns needs only to be made 
if appropriate. 

For subgroups where the trigonal columns are sym- 
metry related by a threefold rotation or screw axis, a 
distinction is made whether this symmetry axis is 
coinciding with a mirror plane or whether it is not. 
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As an example, trigonal columns of OFF (Gard & 
Tait, 1972) [generated by e (cancrinite) and D6R 
(double six-ring) cages] also occur in the WEN struc- 
ture (Wenk, 1973). In OFF [Fig. 3(a)] and in all 
structures of the ABC-6 group (Tambuyzer, 1977; 
Smith & Bennett, 1981) the trigonal axes coincide 
with the mirror planes parallel to the hexagonal c 
axis, while in WEN and related structures they do 
not [Fig. 4(d), see below]. A WEN-related structure 
can be constructed for example from the trigonal 
columns occurring in ERI (erionite) (Staples & Gard, 
1959) by inserting interrupted T atoms on the trigonal 
axes symmetry relating the columns. The way of sym- 
metry relating trigona! columns by threefold axes as 
in the ABC-6 group will be designated M (i.e. three- 
fold axes coinciding with the mirror planes; M for 
mirror plane) and in the WEN-related structures N 
(i.e. threefold axes not coinciding with the mirror 
planes). The trigonal columns in MAZ (mazzite) 
(Rinaldi, Pluth & Smith, 1975), structure types 17 
(Andries & Bosmans, 1990) and 55 (Bosmans & 
Andries, 1990) as well as in tridymite (Gibbs, 1926), 
cristobalite (Wyckoff, 1925), DOH (Gerke & Gies, 
1984) and DDR (Gies, 1986) (according to the 
alternative way of describing these last three struc- 
tures, see below) are M related. According to its 
alternative description (see below), the trigonal 
columns in quartz (Bragg & Gibbs, 1925) are N 
related because no mirror planes parallel to the three- 
fold screw axes occur. In the most general case, the 
difference between M and N related trigonal columns 
may be applied to all subgroups where trigonal 
columns are symmetry related by 3j-fold rotation or 
screw axes (j  positive integer), including subgroups 
12 to 14. 

General rules for classifying 3D framework structures 
in the several subgroups of the LCTC group 

Rule 1 
Some ambiguity has to be resolved concerning 

the type of trigonal column used for classifying 

i \ I / \ I / 

(a) (b) (c) 

Fig. 3. Connecting trigonal columns laterally to form 3D nets. 
OFF columns are represented with full lines and their connec- 
tions with dotted lines. Hexagonal unit cells and the main sym- 
metry operators are indicated. (a) OFF (Gard & Tait, 1972); 
(b) LTL (Barrer & Villiger, 1969); (c) hypothetical LTL-related" 
net (Barrer & Villiger, 1969). In (b) high-membered rings (S8R) 
and in (c) low-membered rings (S4R) are formed between 
neighbouring trigonal columns. 

framework structures in the subgroups of the LCTC 
group: with different trigonal columns present in one 
and the same net, the PTC (primary trigonal column) 
used as classification criterion is the one with the 
lowest cross-sectional area in projection and it is 
generated by the simplest trigonal units. 

The maximum number of different trigonal column 
types for 3D nets in the hexagonal set of the LCTC 
group is three (at least if we exclude nets with very 
large unit cells). As an example: in OFF (Gard & 
Tait, 1972) [Fig. 3(a)], three types oftrigonal column 
can be distinguished: (i) the PTC made of e and D6R 
cages; (ii) the secondary trigonal column (STC) con- 
sisting ofgmelinite cages; and (iii) the tertiary trigonal 
column (TTC) forming the 12R channel. In CHA 
(chabazite) (Smith, Rinaldi & Dent Glasser, 1963) 
only one type of trigonal column occurs (PTC= 
STC--TTC). For nets in the orthorhombic set of the 
LCTC group the maximum number of different 
trigonal column types is one (e.g. Figs. 1 and 2). 

Furthermore, several cases concerning the number 
of different trigonal column types can be distin- 
guished: 

(i) the maximum number of different trigonal 
column types in hexagonal nets where neighbouring 
trigonal columns are symmetry related by mirror 
planes or c glides is two [e.g. Figs. 3(b) and (c)]. 

(ii) In hexagonal nets with M-related trigonal 
columns there are two possibilities: in frameworks 
where neighbouring trigonal columns are symmetry 
related by a threefold rotation axis, the maximum 
number of different trigonal column types is three 
[e.g. OFF (Gard & Tait, 1972), see above] and it is 
two when the trigonal columns are symmetry related 
by threefold screw axes [e.g. MAZ (Rinaldi, Pluth & 
Smith, 1975)]. 

(iii) The same number is two for nets with isolated 
N-related trigonal columns [e.g. WEN (Wenk, 1973), 
Fig. 4(d), see below]. 

(iv) The maximum number of different trigonal 
column types seems to be variable for hexagonal nets 
constructed from non-isolated trigonal columns (sub- 
groups 12-14, 24): in frameworks where the trigonal 
columns share faces with six identical ones [ e.g. DDR 
(Gies, 1986) and cristobalite (Wyckoff, 1925), Fig. 
4 ( f )  and (c), respectively, see below] it may be one. 
The same number may be two in frameworks where 
the trigonal columns share faces [e.g. DOH (Gerke 
& Gies, 1984), Fig. 4(e), see below; nets 23 and 24 
(Bosmans & Andries, 1990)] or edges [e.g. tridymite 
(Gibbs, 1926), Fig. 4(b), see below] or vertices [e.g. 
quartz (Bragg & Gibbs, 1925), Fig. 5, see below] with 
three identical columns. 

Rule 2 
A description based on trigonal columns only is 

preferred over a description based on trigonal 
columns and inserted T atoms (e.g. DDR, see below). 
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Rule 3 
A description based on non-interrupted trigonal 

columns is used instead of a description based on 
interrupted columns, even if the former column is 
more complex than the latter (i.e. rule I violated) (e.g. 
WEN, see below). 

Rule 4 
When a 3D net can be described using face sharing, 

edge sharing and/or vertex sharing trigonal columns, 
the following sequence should be considered ( '> '  
stands for: is preferred over): 

face sharing > edge sharing 
> vertex sharing > isolated. 

According to this rule, tridymite, cristobalite and 
quartz are classified in the LCTC group (see below). 

Detailed descriptions of some hexagonal 3D framework 
structures in relation to their classification in the LCTC 

group 

1. The tridymite/ cristobalite polytypic series 

Systematic derivation: Nets constructed from 
simple hexagonal 2D nets with alternating up/down 
tetrahedra [layer A in Fig. 4(a)] can be enumerated 
systematically in the same way (A, B, C stacking) as 
was done for the ABC-6 group of zeolites and related 
materials (constructed from parallel simple hex- 
agonal 2D nets with all T atoms identically oriented) 
(Tambuyzer, 1977; Smith & Bennett, 1981). All 
frameworks of the first type can be generated by face- 
and/or edge-sharing trigonal columns composed of 
2T trigonal cages of type S(CS)t (l is zero or a posi- 
tive integer; the notation SCS is shorthand for the 
1-3(S)3(C)3(S)3-1 2T trigonal cage]. Tridymite and 
cristobalite are the two simplest structures of this 
family [Smith (1977): structure types 2 and 1, respec- 
tively]. 

Polytypic structures (Verma & K_rishna, 1966) with 
more complex stacking sequences of the 2D nets can 
be derived. Denoting a 2D net by a letter [either A, 
B or C: Fig. 4(a)] characterizing its stacking position, 
and letting k denote the number of 2D nets in the 
repetitive sequence of letters along the hexagonal 
[001] axis, the possible 3D nets up to k = 6, together 
with their net number, are compiled in Table 3. Notice 
that (i) sequence AAA. . .  is possible, (ii) sequences 
ABC, BCA and CAB are identical and (iii) BAB and 
ABA are not possible. All structures have a hexagonal 
a parameter of approximately 5.05A and a 
hexagonal c repeat of approximately 4.13tA (t 
denotes the number of parallel 2D nets in the unit 
cell). These values were derived on the basis of cell 
parameters for tridymite and cristobalite given by 
Smith (1977), assuming that all T sites are occupied 
by silicon. 

Table 3. The systematic derivation of 3D nets con- 
structed from parallel simple hexagonal 2D nets ( T 

atoms alternately either up or down) 

k denotes the number of 2D net symbols in the repetitive stack 
sequence along the hexagonal c axis; the letters A, B and C stand 
for stacking positions of hexagonal layers (Fig. 4a); sheet designa- 
tions Z1 and Z2 are explained in the text; 2T trigonal cage 
designations are found in the paper of Bosmans & Andries (1990); 
RF stands for established materials with the framework topology 
described and REF denotes reference to the first description of 
the net topology. 

Stacking 2 T Net 
k sequence Sheets trigonal cages RF number REF 
1 A Z 1 S Tridymite 14 ( 1 ) 
2 / / / / / / 
3 ABC Z2 SCS Cristobalit¢ 15 (2) 
4 AABB Z1 SCSCS, / 14b / 

S 
5 AAABC Zl ,  Z2 SCSCSCS, / 16 / 

SCS, S 
6 AAAABB Z I  SCSCSCSCS, / 14c / 

SCSCS, S 
ABCCBA Z2 SCSCS, / 15b / 

SCS, S 

References: (1) Gibbs (1926); (2) Wyekoff (1925). 

Alternatively, all nets can be generated by chains 
of isolated S(CS)r type  cages along the hexagonal c 
axis, sharing edges and/or faces with cages of adja- 
cent chains. A sheet structure (designated type Z1) 
generated by edge-sharing S cages (one edge parallel 
to the hexagonal c axis shared between adjacent 
cages) is formed by the succession of two identical 
letters of parallel 2D nets (e.g. AA). The structure of 
tridymite (Table 3) can therefore also be generated 
by a vertical stacking of Z1 sheets [Fig. 4(b)]. The 
ABC sequence results in a sheet (designated type 
Z2) consisting of edge-sharing SCS cages (three co- 
planar edges in a mirror plane parallel to the 
hexagonal c axis shared between adjacent cages). The 
structure of cristobalite (Table 3) is constructed by 
stacking Z2 sheets [Fig. 4(c)]. All members of this 
polytypic series can be constructed from Z1 and/or 
Z2 hexagonal sheets, connected by forming T2 units. 
In some cases, novel sheet types are formed in 
between; these then are composed of S(CS)rtype 2 T 
trigonal cages with 1<2 if k < 4  and 1> 1 if k > 3  
(Table 3). 

Classification: The classification of tridymite 
(Gibbs, 1926) and cristobalite (Wyckoff, 1925) in the 
LCTC group still needs some explanation. 

In the tridymite structure, two types of trigonal 
columns can be distinguished [Fig. 4(b)]: the PTC 
[S cages connected along [001] by forming T2ra units 
(T2m stands for the T2 unit where the T nodes are 
symmetry related by a mirror plane)] and the STC 
[repetition of 3(C)3(S)]. Using PTC's, neighbouring 
columns are symmetry related by a c glide parallel 
to the hexagonal c axis [compare with net 2 of 
Bosmans & Andries (1990)]: a 1-3(S)3-1 cage of one 
PTC is connected between two such cages of the 
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ne ighbour ing  PTC [single six-ring (S6R)  faces 
opposed].  

In that way, two other S cages are formed,  shar ing 
one edge (paral lel  to the hexagonal  c axis) with the 
first cage. The structure can thus be constructed from 
PTC's that are symmetry  related by trigonal axes (the 
central axes of  the STC's).  Three tr igonally related S 
cages share three edges and  form the CS-type infinite 
co lumn (a hexagon in the hexagonal  2D net). 

According to rule 4, t r idymite is classified in sub- 
group 13 instead of  in subgroup 8 (Table l a ) .  

In accordance with its classification in the LCTC 
group, the net of  t r idymite belongs to the s imple 
(group 2) t r idymite group (containing 3D nets con- 
structed f rom 2 T  tr igonal  cages that are symmetry  
related by threefold axes, whereby ne ighbour ing  
hexagonal  sheets are symmetry  related by t ranslat ion 
along [001]): it can be constructed by stacking 
hexagonal  sheets made  of  edge-sharing S cages. 
According to the alternative description (in subgroup 
8), the net of  t r idymite belongs to the non-s imple  
(group 1) t r idymite group (containing 3D nets con- 
structed from 2 T  trigonal cages that are symmetry  
related by mirror  planes paral lel  to the hexagonal  c 
axis, whereby ne ighbour ing  hexagonal  sheets are not 
s imple (i.e. neighbour ing  cages are not ident ical  

a n d / o r  d isp laced  along [001]) or are not symmetry  
related by t ransla t ion along [001]): ne ighbour ing  
cages in the same hexagonal  sheet are d isplaced by 
the appl ica t ion of  the c glide. 

In the structure of  cristobalite [Fig. 4(c)] only one 
type of  tr igonal  co lumn is dist inguished,  consist ing 
of  1-3(S)3(C)3(S)3-1 cages. Neighbour ing  SCS 
cages form T2i units (denot ing the T2 unit  where the 
T nodes are symmetry  related by inversion) along 
the hexagonal  c axis. Each co lumn is sur rounded  by 
six identical  co lumns (the hexagons in the hexagonal  
2D net). Ne ighbour ing  SCS cages share three edges 
each and are symmetry  related by a mirror  p lane  
parallel  to the hexagonal  c axis. 

Three adjacent  tr igonal columns symmetry  related 
by a trigonal axis [Fig. 4(c): this axis coincides with 
a T node shared by three hexagons in the 2D net and 
runs perpendicu la r  to the plane of  the paper]  bui ld  
up an ident ical  type of  tr igonal co lumn (at a shorter 
distance in compar i son  with a cage that is symmetry  
related by a mirror  plane).  This co lumn then is dis- 
placed 1/3c or 2/3c along [001]. The SCS cages of  
two adjacent  PTC's d isplaced along [001] share S6R 
faces: one co lumn is sur rounded by six identical  
columns that are al ternately displaced 1/3c or 
2/3c. 

\ 1  

I 

(b) I Tridymite 

I /  

'(d)" / I (e) I \ 
Wenkite (WEN) Dodecas[1-1H (DOH) 

~- i, ̧~ '2 ~ /  

(C) Cristobalite 

\ A A A A / 
_'k- 7~ _ 

z- & 

(f) 
Deca-Dodecasil-3R (DDR) 

Fig. 4. Line drawings of the structures of (b) tridymite, (c) cristobalite, (d) wenkite (WEN), (e) dodecasil-lH (DOH) and (f) 
deca-dodecasil-3R (DDR) in a projection onto the hexagonal (001) plane, visualizing their classification in the LCTC group. Each 
time, mirror planes and/or c glides as well as the unit cell are indicated. In (a) the ,4, B and C stacking positions are shown for 
the simple hexagonal 2D net from which all members of the tridymite/cristobalite polytypic series are constructed. Layers A, B and 
C are represented with full, dashed and dotted lines respectively. In layer A only, T nodes are specified either up (circle) or down 
(no circle). In (b), S cages are at z = 0 (large circles) and at z =½ (small circles). In (c) SCS cages are at z =0 (intermediate sized 
circles), at z =½ (large circles) and at z =2 (small circles). In (d) OFF columns are represented with full lines and their connections 
(by interrupted T nodes) with dotted lines; the latter lines show part of the SSS cages. In (e) the trigonal axes of the PTC's are 
indicated with large circles and those of the STC's with small circles; the corresponding 435663 and 51268 cages forming these columns 
are clearly distinguished. One non-trigonal column made of 5 *2 cages is indicated with bold lines. In (f) YY(m)XX-type trigonal 
columns are represented by hexagons; this way of representing may be used, although it is not fully correct since the 1-1 units of 
the PTC's are not shown and the cross section of this type of column is not a S6/L 0, 1 and 2 denote PTC's at z = 0, z = t and z = ], 
respectively. 
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According to rule 4, cristobalite is classified in 
subgroup 12 instead of in subgroup 13 (Table la).  

Following its description in the LCTC group, the 
net of cristobalite should not belong to the tridymite 
group because it cannot be constructed by stacking 
hexagonal sheets made of face-sharing SCS cages 
that are mutually displaced in the same hexagonal 
sheet. Nevertheless, according to the alternative 
description (in subgroup 13), the net of cristobalite 
belongs to the non-simple (group 1) tridymite group: 
neighbouring cages in the same hexagonal sheet share 
edges across a mirror plane and neighbouring sheets 
are rotated by 180 ° parallel to (001). 

The structures of tridymite and cristobalite, 
although belonging to the same polytypic series, are 
not classified in the same subgroup of the LCTC 
group (Table 1 a). 

All nets of this series can be generated by T2 units 
only (tridymite: T2m, cristobalite: T 2 i  , all other nets: 
T2r, and T2i). 

2. Quartz 

The PTC of quartz (Bragg & Gibbs, 1925) (Fig. 5) 
is a type-2 trigonal column constructed from T nodes 
that are symmetry related by a 32 (right-handed 
quartz) or a 31 (left-handed quartz) screw axis. One 
such column is connected to a second by sharing 
vertices, whereby both columns are symmetry related 
by twofold rotation around the axis through the 
common T nodes. Six vertex-sharing PTC's that are 
symmetry related by a 62 (right-handed quartz) or a 
64 (left-handed quartz) screw axis build up the STC 
with six-ring cross section. 

The structure can also be generated from isolated 
PTC's, symmetry related by 32 (right-handed quartz) 
or 31 (left-handed quartz) screw axes. 

According to rule 4, quartz is classified in subgroup 
24 instead of in subgroup 25 (Table la).  

2 I 

o oX 
,. oj 2,v 

2 

2 0 

0 Xw 
2 

(a) 

2 , i  

2 , ~  

2Vo 2 
1 1, 

2 

(b) 

2 1 

A 

2 

Fig. 5. Projections onto the hexagonal (001) plane for (a) the 
right-handed and (b) the left-handed enantiomorphs of quartz. 
Figures denote displacements (in thirds of the c repeat) from 
the plane of the paper (i.e. z = 0) according to Bragg, Claringbull 
& Taylor (1965). Unit cells with the main symmetry operators 
are indicated. The height of nodes around each six-turn helix is 
represented by the sequence 012012 [anticlockwise in (a), clock- 
wise in (b)] (Smith, 1979). 

3. Wenkite ( W E N )  

The framework of WEN (Wenk, 1973) can be gen- 
erated in part using the trigonal OFF columns [Fig. 
4(d)]. Neighbouring columns are not connected 
directly, but by means of inserted T atoms on the 
trigonal axes symmetry relating the columns. Neigh- 
bouring OFF columns are also symmetry related by 
glide planes parallel to the hexagonal c axis. 

Because the inserted T atoms lie on trigonal axes, 
the structure can alternatively be described on the 
basis of simple hexagonal sheets made of SSS 2T  
trigonal cages [which are symmetry related by mirror 
planes parallel to the hexagonal c axis: compare the 
unit cells in Fig. 4(d) and in Fig. 14 of Bosmans & 
Andries (1990)]. When these sheets are stacked to 
form T2m units, the resulting (group 1) simple 
framework is interrupted. Another way to stack these 
sheets is by the insertion of S6R unit layers in between 
them. Each T atom of these S6R's then is connected 
to two T atoms of the 3MS's (closest to the 1MS's) 
of two SSS cages connected along [001]. In this case 
(topology of WEN), the T atoms of the 1MS's are 
not forming T2m units, but are interrupted. 

It is noteworthy that a case 1 insertion occurs in 
the first description of the WEN structure and a case 
2 insertion in the second. 

Obviously, the WEN framework is intermediate 
between both the ABC-6 (Tambuyzer, 1977; Smith 
& Bennett, 1981) and the tridymite (Bosmans & 
Andries, 1990) groups. 

Although the OFF columns have a larger cross 
section and are made of more complex trigonal units 
than the columns made of SSS cages, the latter 
column is interrupted and is therefore not selected 
as PTC: according to rule 3, WEN is classified in 
subgroup 3 instead of in subgroup 11 (Table 1 a). 

4. Framework structures constructed from face-sharing 
group B 2 T trigonal cages 

Established materials with a framework belonging 
to this group are some clathrasils (e.g. Liebau, Gies, 
Gunawardane & Marler, 1986). 

The most symmetrical 2 T trigonal cage of group 
B (i.e. constructed from 3MS's and 6MS's without 
any S3R perpendicular to the symmetry axis) {512, 
pentagondodecahedron, rd (Smith, 1988), sequence 
1-3(H)6(H)6(H)3-1  [see Bosmans & Andries (1990) 
for explanation of symbols]} can be linked with iden- 
tical cages (sharing S5R's) into a hexagonal sheet, 
which cannot be stacked to form a net of the tridymite 
group: the trigonal axes with on-axis 1-1 units dis- 
appear as a consequence of the particular mode of 
connecting these cages. This type of hexagonal sheet 
occurs in the framework types DOH (Gerke & Gies, 
1984) and MTN (ZSM-39) (Gies, 1984). The 512 cage 
also occurs in the framework-type MEP (melano- 
phlogite) (Gies, 1983) and DDR (Gies, 1986). 



K. J. ANDRIES 863 

Hypothetical nets related to the structure types 
MTN and MEP have been described by Schlenker, 
Dwyer, Jenkins, Rohrbaugh, Kokotailo & Meier 
(1981). Polytypic structures (Verma & Krishna, 1966) 
related to the MTN (Gies, Liebau & Gerke, 1982) 
and DDR (Gies, 1986) frameworks have also been 
described. 

1 T trigonal cages of group E (denoting trigonal 
cages with one on-axis T node and an S6R perpen- 
dicular to the trigonal axis) occur in the framework 
types DDR (see below) and MTN [51264: 1- 
3(H)6(O)6(O1)6(LH)6 (Gies, 1984)]. 0T trigonal 
cages of group G (denoting trigonal cages with two 
S6R's perpendicular to the trigonal axis) occur in 
the framework type DOH (see below). 

Two hexagonal 3D framework structures belonging 
to this group will be discussed in detail: dodecasil-lH 
and deca-dodecasil-3 R. 

Dodecasil-lH (DOH) 

The DOH framework (Gerke & Gies, 1984) [Fig. 
4(e)] can be made of trigonal columns composed of 
435663 cages [Fig. 10(b2) of Bosmans & Andries 
(1990)], connected by forming TErn units along the 
hexagonal c axis. Cages of neighbouring trigonal 
columns that are symmetry related by mirror planes 
share S4R faces. The framework is completed by the 
insertion of layers of S6R units, in a similar way as 
was described for the WEN structure (i.e. every T 
atom of an S6R is connected to two T atoms of the 
3MS's of two neighbouring cages along [001]). 

The structure can also be described on the basis of 
trigonal columns that are symmetry related by trigonal 
axes and that are connected by supplementary T2m 
units (case 2 insertion on the trigonal axes). These 
columns are made of 51268 cages, sharing S6R's per- 
pendicular to [001]. 

A third way to describe the structure is on the basis 
of face-sharing non-trigonal columns made of 512 
cages. The parallel edges of two cages (all edges of 
this cage are symmetrically equivalent) are connected 
along [001] and form the S4R shared between two 
435663 cages. It seems surprising that the hexagonal 
framework of DOH can be described using only one 
2T trigonal cage (512), while none of the trigonal axes 
of this highly symmetrical cage is preserved coincid- 
ing with the hexagonal c axis. 

Part of the DOH framework is related to 
hypothetical net 24 of Bosmans & Andries (1990): 
both are constructed from the same PTC. In the latter 
net, neighbouring columns share S6R faces and all 
T atoms are (4; 2)-connected, while in the former 
structure the same columns share S4R faces to form 
an interrupted 3D net. 

According to rule 1, DOH is classified in subgroup 
14 instead of in subgroup 5 (Table la).  

Deea-dodecasil-3R (DDR) 

The DDR framework (Gies, 1986) is generated by 
trigonal columns with cage sequence Y Y ( m ) X X .  In 
this notation X X  denotes two 435661 cages, sharing 
S6R faces perpendicular to the trigonal axis and 
symmetry related by an inversion centre; 1 (m) 1 desig- 
nates the T2m unit and YY stands for two 435126183 
cages, sharing S6R's perpendicular to the trigonal 
axis and symmetry related by an inversion centre. 
The trigonal stack sequence is 1-3(H)6(L)6(O)- 
6( O 1 )6( LH )6( O )6( O 1 )6( A2)6( L )6( n ) 3-1 ( m ) 1- 
3(H)6(LH)6(H)6(H)3-1 ,  where the underlined 
sequence is represented by YY and the non-under- 
lined sequence by XX. The geometry of the A2- 
connected 6MS is fixed by the fact that two 435126183 
cages are symmetry related by inversion. If the height 
of X X  along the hexagonal c axis is denoted by 2HX 
and that of YY by 2HY, then 2HX = H Y  and c = 
2 H Y +  2HX = 3 H Y  = 6HX. One column of this type 
is surrounded by six identical columns [Fig. 4(l)], 
whereby neighbouring columns are displaced 1/3c or 
2/3c along [001]. Neighbouring columns share S4R, 
S5R and S8R faces and (isolated) columns at the 
same height are symmetry related by mirror planes 
parallel to the hexagonal c axis. 

Part of the framework can also be made of the 
same type of trigonal column whereby three columns 
are symmetry related by a trigonal axis; supplemen- 
tary T atoms (case 2 insertion of T2m units with 
associated 3MS's) have to be inserted to complete 
the 3D framework of DDR. 

According to rule 2, DDR is classified in subgroup 
12 instead of in subgroup 5 (Table la).  

General remarks 

Schematic projections onto the hexagonal (001) plane 
for the hypothetical nets of the tridymite/cristobalite 
polytypic series are not given: their two-dimensional 
representations would be too complicated. The repeti- 
tion sequence of the PTC for nets 14b, 14c, 15b 
and 16 (Table 3) is 1-3(S)3-1(i), 1-3(S)3-1(m)1-3- 
(S)3-1(i)1-3(S)3-1(i), 1-3(S)3(C)3(S)3-1(m) and 
1-3(S)3-1(m)1-3(S)3(C)3(S)3-1(i),  respectively 
[1(i)1 denotes the T2i unit]. 

For none of the framework structures belonging to 
the tridymite/cristobalite polytypic series ( k >  3 in 
Table 3), nor for the structures related to DOH or 
belonging to the DDR polytypic series (Gies, 1986), 
a LCTC subgroup was assigned at present. 

Hexagonal frameworks made of isolated trigonal 
columns belong to the subgroups 1-11 and 25 (Table 
la).  Some of these have a low framework density 
(FD). Frameworks with lowest FD are made of 
trigonal columns with case 1 insertion of T atoms 
(subgroups 3, 4, 9 or 10) or they are generated by 
trigonal columns composed of horizontal stacks with 
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Table 4. Detailed description of  some subgroups in the LCTC group with some examples of  members 

Figures in the fourth column denote net numbers assigned by Bosmans & Andries (1990) or Andries & Bosmans (1990). h denotes the 
number of T atoms in the horizontal stacks (1, 3 and /o r  6) for type 1 trigonal columns; REF denotes reference to the first description 
of the net topology. Framework structures in subgroups 12 and 13 may also belong to the tridymite group. 

h 
1+3 

1+3+6 
3 

3+6 
6 

7 1+3 t 

1+3+6 
3 

3+6 
7H 6 

7L 6 

8 1+3 
1+3+6 

3 
3+6 

6 

12 1+3 
1+3+6 

3 
3+6 

6 

13 1+3 
1+3+6 

3 
3+6 

6 

14 1+3 
1+3+6 

3 
3+6 

6 

15 1+3 } 

1+3+6 
3 

3+6 
6 

24 / 

Subgroup 

1 

Groups Examples Repetition sequence REF 

Group 2 55 1-3-1(m) (1) 
tridymite 60 1-3(LH)3(S)3-1 (m) (1) 
group (1) 

17 3(LH)3(S) (18) 

CHA group CAN LH-L (2) 
ABC-6S CHA LH-L-L-H-H-LH (3) 
(16), (15) OFF LH-L-LH (4) 

ERI LH-L-LH-LH-H-LH (5) 

AFY 1-3(C)3-1(i) (6) 
Group 1 AFS 1-3(C)3(S)3(C)3-1(i) (6) 
tridymite BPH 1-3(C)3(S)3(C)3-1(m) (7, 19) 
group (1) 3b 1-3(C)3-1(m) (1) 

19 1-3(H)6(H)a-1(m) (1) 
28 3(C)3(S) (8) 
31 3(H)6(H)3(S) (18) 

LTL group LTL LH- L- LH (9) 
(9) 
(9) Hypothetical LH- L- LH (9) 

AFI 3(C)3(S) (10) 

Cristobalite 1-3(S)3(C)3(S)3-1 (i) (11) 
DDR See text (12) 

23 1-3(H)6(H)3-1(m) (1) 
24 1-3(H)6(L)6(H)3-1(m) (1) 

Tridymite 1-3(S)3-1(m) (13) 

DOH 1-3(H)6(L)6(H)3-1 (m) (14) 

2T 
orthorhombic 

group (18) 

46 1-3(C)3-1(i) (18) 
47 1-3(C)3(S)3(C)3-1(m) (18) 

52 3(C)3(S) (18) 
53 3(LH)6(H)3(S) (18) 

Quartz 021 (17) 
(right-handed) 

Quartz 012 (17) 
(left-handed) 

References" (1) Bosmans & Andties (1990); (2) Jatchow (1965); (3) Smith, Rinaldi & Dem Glasser (1963); (4) Gard & Tait (1972); (5) Staples & Gard 
(1959); (6) Bennett & Marcus (1987); (7) Andries (1989); (8) Bennett & Smith (1985); (9) Barrer & Villiger (1969); (10) Bennett, Cohen, Flanigen, Pluth 
& Smith (1983); (11) WyckotI (1925); (12) Gies (1986); (13) Gibbs (1926); (14) Gerke & Gies (1984); (15) Smith & Bennett (1981); (16) Tambuyzer 
(1977); (17) Bragg & Gibbs (1925); (18) Andries & Bosmans (1990); (19) Harvey & Meier (1989). 

h values exceeding 6 (e.g. columns with h =  
12, 24, . . . ) .  It is obvious that in both cases nets with 
very low framework density are expected to have very 
large unit cells. 

Hexagonal frameworks made of face-sharing 
trigonal columns belong to the subgroups 12 or 14 
(Table l a). The framework density is proportional 

to the number of faces shared (compare DDR with 
net 24) and/or to the number of T atoms inserted 
(compare DOH with net 24). 

Framework structures in subgroups 1 or 7 (Table 
1 a) generated by trigonal columns with 1MS's belong 
to the tridymite group (Bosmans & Andries, 1990). 
Nets of the tridymite group made of face- and/or 
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edge-sharing trigonal columns belong to the sub- 
groups 12 or 13 (e.g. tridymite and cristobalite). 
Neither WEN nor DOH belongs to the tridymite 
group, because none of these frameworks can be made 
of hexagonal sheets as defined earlier by Bosmans & 
Andries (1990). Frameworks in the same two sub- 
groups (1 and 7) made oftrigonal columns containing 
S-connected 3MS's (no S3R's) but without 1MS's, 
belong to the extended tridymite group described by 
Andries & Bosmans (1990). Similarly, frameworks of 
subgroup 15 belong to the 2T orthorhombic group 
when their trigonal columns contain 1MS's and to 
the extended orthorhombic group when their columns 
contain S-connected 3MS's (no S3R's) but no 1MS's 
[see Andries & Bosmans (1990) for description of 
groups]. 

Table 4 gives some more detailed information on 
subgroups 1, 7, 8, 12, 13, 14, 24 and 15. Most estab- 
lished hexagonal frameworks belong to the first seven 
subgroups of this table. 

Some explanations concerning Table 4 are 
necessary: 

(i) the chabazite group of zeolites and related 
materials (Tambuyzer, 1977; Smith & Bennett, 1981) 
is designated the ABC-6S group with members being 
made of simple hexagonal 2D nets with identical 
orientation of all T nodes (S for same). The ABC-6C 
group designates the tridymite/cristobalite polytypic 
series with members being constructed from 
hexagonal 2D nets with alternating up and down 
tetrahedra (C for changed). 

(ii) Frameworks of the ABC-6S polytypic series 
do not belong to the extended tridymite group 
(Andries & Bosmans, 1990) derived from group 2 
nets of the tridymite group (Bosmans & Andries, 
1990), because the extended frameworks must 
necessarily be made of trigonal columns with 3MS's: 
the TET transformation (Andries & Bosmans, 1990) 
removes the T2 units only (not the associated 3MS's) 

OFF 
(a) 

L4 

) 

)L 
) n 

ERI 
(b) 

Fig. 6. Line d rawings  showing  the p r i m a r y  t r igonal  co lumn  in ( a )  
O F F  and  (b)  ERI .  One  doub le  chain  a long the t r igonal  axis has  
been  indica ted  with bo ld  lines. Hor izonta l  s tack des ignat ions  
are exp la ined  in the text. 

Table 5. The designation of (4; 2)-connected and 
related hexagonal 3D structure types by means of  a 
composite code and the repetition sequence of  the 

primary trigonal column 

Figures in the  first co lumn  deno te  net n u m b e r s  ass igned  by  
Bosmans  & Andr ies  (1990). References  towards  structural  in fo rma-  
tion on es tabl i shed mater ia ls  are found  in the text a n d / o r  Tab le  4. 

Repet i t ion  
Structure type  C o m p o s i t e  code  sequence  

OFF H 3 (M) D • 
CHA H 3(M) D • 
AFS H m (H) D * 
BPH H m (H) D * 

Quartz (right) H 62 (N) V * 
Tridymite H 3 (M) E * 

Cristobalite H n F * 
DOH H m (L) F(II)  * 
DDR H n F * 
WEN H 3 (N)  I 1 . 9 4 1  L H - L - L H  
LTL H m (H) D * 
MAZ H 63 (M)  D L H - L - L  
VPI-5 H m (H) I CS 

AFI H c (H)  D * 
55 H 3 (M) D * 
24 H m (H) F * 

* See Table 4. 

and thus three-membered stacks are left in all these 
extended structures. Frameworks of the LTL and the 
LTL-related groups (Barrer & Villiger, 1969) do not 
belong to the extended tridymite group derived from 
group 1 frameworks of the tridymite group for the 
same reason. 

(iii) The designations L, H and LH for describing 
the mode of linking adjacent 6MS's in trigonal 
columns generated using only 6MS's were not dis- 
cussed before: L stands for the case where the lowest- 
membered ring is formed in a vertical double chain 
parallel to the column axis, and H stands for the 
opposite case. For example: in OFF (Gard & Tait, 
1972), a double-saw chain occurs with only S4R's 
along the hexagonal c axis [Fig. 6(a)]: the repetition 
sequence is LH-L-LH.  In ERI (Staples & Gard, 
1959) four S4R's are separated from four others by 
an S6R [Fig. 6(b)]: the repetition sequence is denoted 
by L H - H - L H - L H - L - L H .  It should be noted that 
in this type oftrigonal column a second type of double 
chain can be distinguished after rotation by 60 ° 
around the column axis. The designation for this 
alternative double chain is identical to that of the 
first, with L and H interchanged. Thus the trigonal 
column in CHA (Smith, Rinaldi & Dent Glasser, 
1963) for example is denoted by L H - L - L - H - H - L H  
or L H - H - H - L - L - L H .  

Designating 3D LCTC framework topologies 

The designation of a type 2 trigonal column [quartz 
and related structures (Smith, 1979)] was not dis- 
cussed before: such a column may be denoted by the 
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Table 6. Reference to structural information on all nets enumerated in the papers of  Bosmans & Andries (1990) 
(A: Table 4; B: Table 5), Andries & Bosmans (1990) (C: Table 3; D: Table 4) and in this report (E" Table 

2; F: Table 3) 

Figures  deno te  net  numbers .  

Ne t  Refe rence  Ne t  Refe rence  Ne t  Refe rence  Net  Refe rence  

1 A 18 D 43 D 62 D 
2 A 19 A 44 C, D 63 D 
3 A 20 A 45 D 64 D 
3b B 21 A 46 D 65 D 
4 A 22 A 46b D 66 D 
4b B 23 A 47 C, D 67 D 
5 A 24 A 48 D 68 D 
6 A 25 A 48b D 69 D 
6b B 25b B 49 D 70 D 
7 A 26 B 50 D 71 D 
8 A 27 B 51 D 72 D 
8b B 28 C, D 52 D, E 73 E 
9 B 29 C, D 52b E 74 E 

I0 B 30 C, D 52c E 75 E 
11 A 31 C, D 52d E 76 E 
12 A 32 C, D 53 D 77 E 
12b B 33 D 54 D 78 E 
13 B 34 D 55 A 79 E 
13b B 35 C, D 55b B 80 E 
14 F 36 D 56 E 81 E 
14b F 37 D 57 E 82 E 
14c F 38 D 58 E 83 E 
15 F 39 D 59 E 84 E 
15 b F 40 D 60 B 85 E 
16 F 41 D 60b B 86 E 
17 D 42 D 61 D 

sequence of the height of nodes around the threefold 
helix counting anticlockwise. The sequence then is 
composed of y figures (y represents the repetitive 
number of T nodes along the hexagonal c axis), 
whereby each figure is the fractional height of a node 
when divided by y. Doing so, the PTC's in the left- 
and right-handed varieties of quartz may be denoted 
by 012 (or 120 or 201) and 021 (or 210 or 102) 
respectively. The corresponding STC's may be 
denoted by 042042 (or 420420 or 204204) and 024024 
(or 240240 or 402402) respectively (Fig. 5). 

Hexagonal 3D nets are constructed from trigonal 
columns because the hexagonal symmetry of the 3D 
lattice generates from the trigonal symmetry of the 
trigonal columns. The following rules apply for the 
systematic enumeration of hexagonal 3D nets: 

(i) The trigonal columns can be of two different 
types: 

(a) a type 1 trigonal column has a threefold 
rotation axis (e.g. OFF); 

(b) a type 2 trigonal column has a threefold 
screw axis (e.g. quartz). 

(ii) Neighbouring trigonal columns can be sym- 
metry related by 

(a) a mirror plane [e.g. AFS (MAPSO-46) 
(Bennett & Marcus, 1987)] or a c glide (e.g. AFI); 

(b) a threefold rotation (e.g. OFF) or screw axis 
(e.g. MAZ). 

(iii) Neighbouring trigonal columns can be linked 
in three distinct ways: 

(a) by direct linking (e.g. OFF); 
(b) by sharing vertices (e.g. quartz), edges (e.g. 

tridymite) or faces (e.g. cristobalite); 
(c) by inserting extra T atoms (case 1 insertion) 

between adjacent trigonal columns (e.g. VPI-5). 
Also orthorhombic 3D nets can be constructed by 

linking trigonal columns: all options under (i), (ii) 
and (iii) are theoretically open, except option (iib). 
Furthermore, the cases (iia) and (iii) can be applied 
in two perpendicular directions (the orthorhombic x 
and y axes), giving rise to a much larger number of 
theoretical possibilities in comparison with the 
hexagonal LCTC set of structures. 

Hexagonal 3D LCTC framework topologies may 
be characterized by means of a code which is com- 
posed of four designations, specifying (in the 
sequence mentioned): 

(i) the crystal class (H for hexagonal); 
(ii) the symmetry relation between neighbouring 

trigonal columns (m for a mirror plane parallel to 
the column axis; c for a c glide; 3j-fold rotation or 
screw axes (j  positive integer) are indicated as such; 
n if no obvious symmetry relation exists). As was 
explained above, the way of symmetry relating neigh- 
bouring trigonal columns may in some cases be 
further specified by L, H, M or N. In such cases, this 
capital letter is given between brackets; 

(iii) the way of linking neighbouring trigonal 
columns (D for direct linking; V for vertex sharing; 
E for edge sharing; F for face sharing; I to specify 
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a case 1 insertion). If a case 2 insertion occurs, this 
will be indicated by giving the figure II between 
brackets; 

(iv) the sharing coefficient (Zoltai, 1960) for inter- 
rupted frameworks. For (4; 2)-connected 3D nets it 
is two and will be omitted. 

As such, the general composite code for a 3D 
hexagonal LCTC net is as follows (figures refer to 
the four options above): 

(i) (ii){(.)} (iii){(..)} {(iv)} 

where { } denotes an optional designation. 
Besides this composite code, the repetition 

sequence of the primary trigonal column has to be 
given also in order to characterize the 3D net. This 
sequence is given separately (not included in the 
code) because it would render the code too compli- 
cated. The type of trigonal column (1 or 2) needs not 
to be specified, a repetition sequence composed of 
figures only without dashes) being unambiguously 
characteristic for a type 2 trigonal column. Some 
designations are given in Table 5. 

This type of 3D net designation for hexagonal 
LCTC structures may further be extended to charac- 
terize also orthorhombic LCTC structure types. The 
following extensions apply: 

(1) O denotes the orthorhombic crystal class; 
(2) the designations (ii) and (iii) above have to be 

specified in two perpendicular directions (x and y as 
in Figs. 1 and 2: the bond density along x is lowest) 
(separated by square brackets). If the code designa- 
tions for both directions are identical only one needs 
to be specified. 

As such, the general composite code for a 3D 
orthorhombic LCTC net is as follows (figures refer 
to the four extended options above): 

(i) [(ii){(.)} (iii){(..)}]a~ong,, {[(ii){(.)} (iii) 
{(.-)}]alongy} {(iv)}. In this way the composite codes 
for nets 61 (Andries & Bosmans, 1990), 84 [Fig. 2(b), 
Table 2] and 52 (Table 2) are O[m(L)D][m(H)E], 
O[c( L)D][c( H) I] and O[m( L)D][m( H) D] respec- 
tively; for all three nets the repetition sequence of 
the PTC is CS. As was explained by Andries & Bos- 
mans (1990), an alternative composite code for 
tridymite is O[c(L)D][m(H)E] with repetition 
sequence (of the STC) CS (compare with the com- 
posite code of net 61 above). 

It should be mentioned that many LCTC structure 
types are unambiguously identified by means of the 
composite code and the repetition sequence of their 
PTC. This is however not the case for some nets: 

(i) those that contain inserted T atoms: the 
geometry of these atoms cannot be described with 
simple rules {an obvious solution is to describe 
explicitly the geometry of the inserted T atoms in 
the unit cell: e.g. one S6R in DOH, two interrupted 
T2m units in WEN, three T408 units [Fig. 2(c)] in 
VPI-5}; 

Table 7. Compiling the definitions, notations and 
abbreviations used in the papers of Bosmans & Andries 
(1990), Andries & Bosmans (1990) and in this report 

Definit ions,  nota t ions  and abbreviat ions Reference  

ABC-6C group C 
ABC-6S group C 
Case 1 (or 2) insertion C 
c-connected trigonal column C 
Channel system A (or B) A 
Composite code for LCTC nets C 
/-connected trigonal column C 
D-connected trigonal column C 
DiR: double i-membered ring 
E-connected trigonal column C 
Extended orthorhombic group B 
Extended tridymite group B 
F-connected trigonal column C 
Group A (or B or C) (2T) trigonal cage A 
Group D (or E) (1 T) trigonal cage A 
Group F (or G or H) (0T) trigonal cage A 
Group 1 (or 2) net of the tridymite group A 
h C 
H-connected trigonal column C 
Lateral connection of trigonal columns (LCTC) group C 
L-connected trigonal column C 
rn A 
m-connected trigonal column C 
M-connected trigonal column C 
iMS: i-membered (horizontal) stack A 
n A 
n(1); n(2) A 
n-connected trigonal column C 
N-connected trigonal column C 
Primary trigonai column (PTC) C 
R 180 transformation A 
Secondary trigonal column (STC) C 
Simple (or non-simple) net of the tridymite group A 
SiR: single i-membered ring 
Tertiary trigonal column (TIC) C 
2T orthorhombic-extended orthorhombic (OEO) 

transformation B 
2T orthorhombic group B 
Tridymite group A 
Tridymite group-extended tridymite group (TET) 

transformation B 
Tridymite group-2T orthorhombic (TO) transformation B 
T2/3R transformation A 
iT trigonal cage ( i=0 ,  1 or 2) A 
T 2 (T2i , T2m ) unit A 
Type 1 (or 2) trigonal column C 
V-connected trigonal column C 

(1990); References: (A) Bosmans & Andries (1990); (B) Andries & Bosmans 
(C) present paper. 

(ii) those that are constructed from vertex-, edge- 
and/or  face-sharing trigonal columns: no simple rules 
can be derived and an obvious possibility again is to 
describe explicitly the geometry of the shared struc- 
tural subunit(s) in the unit cell (e.g. one T2m unit in 
tridymite; three S4R's in DOH; three T nodes in 
quartz). 

Concluding remarks 

In order to summarize the most important data of 
this paper and the preceding two papers, Table 6 
compiles all structure types enumerated therein and 
Table 7 enumerates definitions, notations and 
abbreviations used throughout. 
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The  lateral connection o f  trigonal columns group 
desc r ibed  here  is f lexible a n d  a m e n a b l e  to change  
a n d  add i t i on :  in the  course  o f  der iv ing  new 
f r a m e w o r k  topo log ies ,  it will  be necessa ry  to ad jus t  
a n d / o r  ex t end  the p resen t  c lass i f ica t ion scheme.  
Fu r the rmore ,  the  p resen t  g roup  m a y  serve as a m o u l d  
for  the fu r the r  i nven t ion  of  novel  f r a m e w o r k  
topologies .  It  s h o u l d  be no t ed  tha t  all h e x a g o n a l  
(4; 2 ) - connec t ed  3D a n d  re la ted  f r a m e w o r k  s t ruc tures  
k n o w n  to da te  can  be  classif ied in the  h e x a g o n a l  
L C T C  set, wh i l e  at this  t ime  no f r ameworks  b e l o n g i n g  
to the o r t h o r h o m b i c  set of  the  L C T C  group  have  been  
es tab l i shed .  Some  nets b e l o n g i n g  to the la t ter  g roup  
seem h o w e v e r  to be qui te  feasible.  In  par t i cu la r ,  2 T 
o r t h o r h o m b i c  s t ruc tures  cons t ruc ted  f rom C ( S C ) r -  
type  2 T  t r igona l  cages are poss ib le  c a n d i d a t e s  for  

fu ture  synthes is .  

References 

ANDRIES, K. J. (1989). The Topology of Hexagonal Three- 
Dimensional Framework Structures and the Crystal Structure and 
Properties of Synthetic Zeolite Linde Q. PhD thesis No. 183. 
Faculteit der Landbouwwetenschappen, Katholieke Univ., 
Leuven, Belgium. 

ANDRIES, K. J. & BOSMANS, H. J. (1990). Acta Cryst. A46, 
847-855. 

BARRER, R. M. (1984). In Zeolites: Science and Technology. NATO 
ASI Series, Ser. E: Applied Sciences No. 80, edited by F. R. 
RIBEIRO, A. E. RODRIGUES, L. D. ROLLMANN & C. 
NACCACHE, pp. 35-81. The Hague: Martinus Nijhoff. 

BARRER, R. M. & VILLIGER, n.  (1969). Z. Kristallogr. 128, 
352-370. 

BENNETT, J. M., COHEN, J. P., FLANIGEN, E. M., PLUTH, J. J. 
& SMITH, J. V. (1983). In Am. Chem. Soc. Symp. Ser. No. 218, 
edited by G. D. STUCKY & F. G. D~W'YER, pp. 109-118. Washing- 
ton, DC: American Chemical Society. 

BENNETT, J. M. & MARCUS, B. K. (1987). In Innovation in Zeolite 
Materials Science. Proceedings of an International Symposium, 
Nieuwpoort, edited by P. J. GROBET, W. J. MORTIER, E. F. 
VANSANT & G. SCHULZ-EKLOFF, pp. 269-280. Amsterdam: 
Elsevier. 

BENNE'Vr, J. M. & SMITH, J. V. (1985). Z. Kristallogr. 171, 65-68. 
BOSMANS, H. J. & ANDRIES, K. J. (1990). Acta Cryst. A46, 

832-847. 
BRAGG, W. L., CLARINGBULL, G. F. & TAYLOR, W. H. (1965). 

The Crystalline State. Vol. 4. Crystal Structures of Minerals, pp. 
84-88. London: Bell. 

BRAGG, W. H. & GIBBS, R. E. (1925). Proc. R. Soc. London Set. 
,4, 109, 405-427. 

DAVIS, M. E., SALDARRIAGA, C., MONTES, C., GARCES, J. & 
CROWDER, C. (1988). Nature (London), 331, 698-699. 

GARD, J. A. & TAIT, J. M. (1972). Acta Cryst. B28, 825-834. 
GERKE, H. & GIES, H. (1984). Z. Kristallogr. 166, 11-22. 
GIBBS, R. E. (1926). Proc. R. Soc. London Set. A, 113, 357-368. 
GIES, H. (1983). Z. Kristallogr. 164, 247-257. 
GIES, H. (1984). Z. Kristallogr. 167, 73-82. 
GIES, H. (1986). Z. Kristallogr. 175, 93-104. 
GIES, H., LIEBAU, F. & GERKE, H. (1982). Angew. Chem. 94(3), 

214-215. 
HARVEY, G. & MEIER, W. M. (1989). In Zeolites: Facts, Figures, 

Future. Proceedings of the 8th International Zeolite Conference, 
Amsterdam, edited by P. A. JACOBS & R. A. VAN SANTEN, pp. 
411-420. Amsterdam: Elsevier. 

JARCHOW, O. (1965). Z. Kristallogr. 122, 407-422. 
LIEBAU, F., GIES, H., GUNAWARDANE, R. P. & MARLER, B. 

(1986). Zeolites, 6, 373-377. 
MEIER, W. M. (1968). In Molecular Sieves, pp. 10-27. London: 

Society of the Chemical Industry. 
MEIER, W. M. & OLSON, D. H. (1987). Atlas of Zeolite Structure 

Types. IZA Special Publication, 2nd revised ed. London: 
Butterworth. 

MOORE, P. B. & SMITH, J. V. (1964). Mineral. Mag. 33, 1008-1014. 
RINALDI, R., PLUTH, J. J. & SMITH, J. V. (1975). Acta Cryst. B31, 

1603-1608. 
SCHLENKER, J. L., DWYER, F. G., JENKINS, E. E., ROHRBAUGH, 

W. J., KOKOTAILO, G. T. & MEIER, W. M. (1981). Nature 
(London), 294, 340-342. 

SMITH, J. V. (1977). Am. Mineral. 62, 703-709. 
SMITH, J. V. (1979). Am. Mineral. 64, 551-562. 
SMITH, J. V. (1988). Chem. Rev. 88, 149-182. 
SMITH, J. V. (1989). In Proceedings of the Eighth International 

Zeolite Conference, Amsterdam, edited by P. A. JACOBS & R. A. 
VAN SANTEN, pp. 29-47. Amsterdam: Elsevier. 

SMITH, J. V. & BENNETI", J. M. (1981). Am. Mineral. 66, 777-788. 
SMITH, J. V. & DYTRYCH, W. J. (1984). Nature (London), 309, 

607-608. 
SMITH, J. V., RINAI.DI, F. & DENT GLASSER,'L. S. (1963). Acta 

Cryst. 16, 45-53. 
STAPLES, L. W. & GARD, J. A. (1959). Mineral. Mag. 32, 261-281. 
TAMBUYZER, E. (1977). Strukturele Kenmerken van Zes Syn- 

thetische Kalium-Zeolieten en de Struk~u"k'rbepaling van Zeoliet 
K-F. PhD thesis No. 81. Faculteit der Landbouwwetenschappen, 
Katholieke Univ. Leuven, Belgium. 

VERMA, A. R. & KRISHNA, P. (1966). Polymorphism andPolytypism 
in Crystals. New York: Wiley. 

WENK, H.-R. (1973). Z. KristaUogr. 137, 113-126. 
WYCKOFF, R. W. G. (1925). Z. Kristallogr. 62, 189-200. 
ZOLTAI, T. (1960). Am. Mineral. 45, 960-973. 


